“We imagine in order to exist and we are curious in order to feed our imaginative desire.”

“Curiosity” by Alberto Manguel
Welcome Message from the Department Head

Program Update: Surgical Foundations

Program Update: General Surgery Residency

Program Update: Orthopaedic Surgery Residency

Program Update: Undergraduate Medical Education

The Department Welcomes: New Surgical Residents

The Department Welcomes: Dr Mark Ormiston

The Department Welcomes: Dr Shaila Merchant

The Department Welcomes: Dr Sunil Patel

Dr Andrew & Margaret Bruce Visiting Scholar in Surgical Innovation Lectureship

Surgical Technologies for the 21st Century

Navigation of iKnife to Enhance Surgical Precision

Paul B. Helliwell Chair for Orthopaedic Research

Charles Sorbie Faculty Research Day

William Emil Resident Research Day

The McGill Alumni Global Lifetime Achievement Award

Best Paper Award at the Annual CCSAS Conference

SEAMO Clinical Research Fellowship Program Award

Grants 2015

Publications 2015

Retirement

Memoriam
The best surgical outcomes for patients occur when the surgical plan is carried out with precision and accuracy. Over the years, we have come a long way in achieving this objective and we still have a long way to go. Alberts Maragis, a prominent Canadian writer and thinker wrote in his book *Curiosity* that “we imagine in order to exist, and are curious to feed our imaginative desire. There is only one great imaginative question, why.” We live in an exciting age where change happens at an ever-increasing pace. Developments in technology, increased computational power and nanotechnology have revolutionized our ability to build sophisticated tools.

The role of the academic department is to use these tools with imagination. To answer the question, why, we must imagine new ways of doing things. We must change and adapt to build on our strengths and to reimagine the future. We must imagine and create new paths and translate thought into action. To do so, we have to reorganize our resources and talents to work faster, more efficiently and more effectively to leverage our resources.

We must imagine and create new paths and translate thought into action. To do so, we have to reorganize our resources and talents to work faster, more efficiently and more effectively to leverage our resources. We must collaborate not only amongst ourselves, but across departments, across faculties, across universities, and across our borders. Translation of ideas from bench to bedside requires energy and hard work.

This year I would like to highlight one venture that is making a difference. Dr. J. Engel our Chair of the Division of Surgical Oncology and his team of residents, computer scientists, engineers and molecular pathologist set out to answer the question.

This result for women around the world is unacceptable as it causes women more pain, anxiety, and costs our health care systems tens of millions of dollars annually!

The team’s response was to build a better solution - one that would localize the tumor and guide the surgeon with precision and accuracy to excise the tumor while minimizing the amount of normal tissue to maintain breast cosmesis. This multidisciplinary team created a method tested in the lab, prototyped the tools for the operating room, and entered into clinical trials within 18 months of starting the project! The results have been spectacular with early findings showing a reduced positive margin of 50% and at the same time, 50% less normal tissue has been excised compared to conventional surgery. The team has presented papers around the world resulting in winning medals and acclaim for their results. There is still much work left to do and randomized controlled studies will be forthcoming within the year.

To take it to the next level, the team is partnering with Imperial College London and Waters Corporation of Boston. We will be linking our Nav technology with their iKnife technology. The iKnife utilizes mass spectroscopy to analyze the smoke plume produced by the electrocautery used by the surgeon to excise the cancerous tissue. This technology can give a surgeon a read out within one second as to whether the tumor margin has been breached. Linking our Nav technology with the iKnife makes the iKnife spatially aware thus creating the potential to bring the breast cancer re-operation rate to zero.

These are exciting times at Queen’s and are yet another example of how imagination, curiosity, highly motivated and skilled people working together can make a difference.

BY THE NUMBERS

ACADEMIC YEAR 2015

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate Medical Students</td>
<td>101</td>
</tr>
<tr>
<td>Undergraduate Visiting Elective Students</td>
<td>30</td>
</tr>
<tr>
<td>Postgraduate Orthopaedic Surgery Residents</td>
<td>15</td>
</tr>
<tr>
<td>Postgraduate General Surgery Residents</td>
<td>21</td>
</tr>
<tr>
<td>Adjunct Faculty</td>
<td>35</td>
</tr>
<tr>
<td>Postgraduate Fellows</td>
<td>16</td>
</tr>
<tr>
<td>Administration Staff</td>
<td>38</td>
</tr>
<tr>
<td>Active Clinical Faculty</td>
<td>3</td>
</tr>
</tbody>
</table>

Linear Process Through Patient Journey

1. **RADIOLOGY**
2. **ONCOLOGY**
3. **SURGERY**
4. **ONCOLOGY**
5. **Pathology**
6. **Post Operative Care**

FROM THE DEPARTMENT HEAD

JOHN RUDAN BSc (HON), MD, FRSC
HEAD OF DEPARTMENT OF SURGERY
QUEEN’S UNIVERSITY

WELCOME MESSAGE

The best surgical outcomes for patients occur when the surgical plan is carried out with precision and accuracy. Over the years, we have come a long way in achieving this objective and we still have a long way to go. Alberts Maragis, a prominent Canadian writer and thinker wrote in his book *Curiosity* that “we imagine in order to exist, and are curious to feed our imaginative desire. There is only one great imaginative question, why.” We live in an exciting age where change happens at an ever-increasing pace. Developments in technology, increased computational power and nanotechnology have revolutionized our ability to build sophisticated tools.

The role of the academic department is to use these tools with imagination. To answer the question, why, we must imagine new ways of doing things. We must change and adapt to build on our strengths and to manage the future. We must imagine and create new paths and translate thought into action. To do so, we have to reorganize our resources and talents to work faster, more efficiently and more effectively to leverage our resources. We must collaborate not only amongst ourselves, but across departments, across faculties, across universities, and across our borders. Translation of ideas from bench to bedside requires energy and hard work.

This year I would like to highlight one venture that is making a difference. Dr. J. Engel our Chair of the Division of Surgical Oncology and his team of residents, computer scientists, engineers and molecular pathologist set out to answer the question.

This result for women around the world is unacceptable as it causes women more pain, anxiety, and costs our health care systems tens of millions of dollars annually!

The team’s response was to build a better solution - one that would localize the tumor and guide the surgeon with precision and accuracy to excise the tumor while minimizing the amount of normal tissue to maintain breast cosmesis. This multidisciplinary team created a method tested in the lab, prototyped the tools for the operating room, and entered into clinical trials within 18 months of starting the project! The results have been spectacular with early findings showing a reduced positive margin of 50% and at the same time, 50% less normal tissue has been excised compared to conventional surgery. The team has presented papers around the world resulting in winning medals and acclaim for their results. There is still much work left to do and randomized controlled studies will be forthcoming within the year.

To take it to the next level, the team is partnering with Imperial College London and Waters Corporation of Boston. We will be linking our Nav technology with their iKnife technology. The iKnife utilizes mass spectroscopy to analyze the smoke plume produced by the electrocautery used by the surgeon to excise the cancerous tissue. This technology can give a surgeon a read out within one second as to whether the tumor margin has been breached. Linking our Nav technology with the iKnife makes the iKnife spatially aware thus creating the potential to bring the breast cancer re-operation rate to zero.

These are exciting times at Queen’s and are yet another example of how imagination, curiosity, highly motivated and skilled people working together can make a difference.
Dr Darrin Payne completed his residency training at Western University in London, Ontario and then went on to complete his fellowship at the Institut Universitaire de Cardiologie et de Pneumologie de Quebec in Laval, Quebec. He is pleased to engage with the residents while fulfilling his interests in teaching and education.

There has been a positive response toward the efforts made to re-establish the teaching sessions that are provided for the residents in preparation for their exams. In addition to our surgical faculty, an excellent effort has been made to broaden the scope of the teaching sessions to include our colleagues in Medicine, Critical Care, Anaesthesia, and Emergency Medicine. The residents and attending staff have recognized the value in this teaching method. Receiving education from a wide range of expertise has been a successful and effective approach for the residents.

Our goal is to launch CBME (Competency Based Medical Education) by July 2017 as per The Royal College of Physicians and Surgeons of Canada's mandate. The current focus within the Surgical Foundations Residency Program is to develop a hybrid of the program by July 2016 to ensure a smooth and successful launch in 2017. Although the curriculum will not change, the delivery of the content is expected to be positively different. Rather than focusing on time based evaluations, the CBME approach will place a greater focus on competency based evaluations and provide students with the tools and confidence to become great doctors.

The Department of Surgery welcomes our new Surgical Foundations Program Director, Dr Darrin Payne.

Dr Darrin Payne, MD, FRCSC
Program Director
Surgical Foundations
PROGRAM UPDATE: GENERAL SURGERY RESIDENCY PROGRAM

This past year has been one of positive changes and growth for the Queen’s General Surgery Residency Program. We welcome two new attending staff to the division: surgical oncologist Dr Shaila Merchant and colorectal surgeon Dr Sunil Patel.

Over the next few years, the postgraduate program will be experiencing significant changes as a result of the development and implementation of the Competency Based Medical Education program. The overall goal of CBME is to use improved evaluation systems as a means to provide the residents with better feedback with the hope that they become well prepared to transition to their fellowship.

The residents continue to expand their experience through their rotations in the Lakeridge Hospital’s Acute Care Service (ACS) in Oshawa. The rotation equips the residents with a great breadth of exposure and experience to develop their technical and surgical skills.

There has also been an increased use of Queen’s Simulation Centre, a state of the art teaching and learning facility which opened in 2011. The Simulation Centre provides the residents with access to an innovative and unique curriculum focused on the high fidelity surgical simulation. The increased use of the Simulation Centre provides greater opportunities for the residents to enhance their hands-on surgical and emergency skills in suturing and knot-tying, laparoscopy, tissue handling, and fracture treatment.

It has been an exciting year for some of our general surgery residents as four of them completed international rotations in a variety of countries including Uganda, South Africa, Burundi, and Nepal. These humanitarian experiences are encouraged as they provide our residents with excellent learning opportunities – both clinically and culturally.

The residents have also been actively involved in research projects this past year. The quality of the research continues to improve and encourage research participation among all residents which yields a positive representation of the Department of Surgery. A number of residents presented their work at the William Ersil Resident Research Day. Dr Morgan Schellenberg won the award for Best Paper in General Surgery for her paper titled “The Diagnostic Yield of Commonly Used Investigations in Pelvic Gunshot Wounds.”

Residents have been actively involved in research activities throughout the year. A number of our residents presented their work at the William Ersil Resident Research Day. Dr Allison Tucker won the award for Best Paper in Orthopaedic Surgery titled: “A Randomized Controlled Trial Comparing Articular Hyaluronic Acid Synovitis with and without Photosensitization for the Treatment of Adhesive Capsulitis.”

All our orthopaedic residents continue to actively participate in research activities and many were asked to present papers at national conferences this past year.

Residents have been excited with the program’s new structure and educational sessions. There has been greater focus on the academic days with modifications to the academic teaching schedule. This new schedule features weekly educational rounds for the sports medicine/upper extremity, arthroplasty, pediatric and trauma services.

The Queen’s Orthopaedic Surgery Residency Training Program has had another successful year. Residents have been actively involved in research activities throughout the year. A number of our residents presented their work at the William Ersil Resident Research Day. Dr Morgan Schellenberg won the award for Best Paper in General Surgery for her paper titled “The Diagnostic Yield of Commonly Used Investigations in Pelvic Gunshot Wounds.”

Residents have been actively involved in research activities throughout the year. A number of our residents presented their work at the William Ersil Resident Research Day. Dr Allison Tucker won the award for Best Paper in Orthopaedic Surgery titled: “A Randomized Controlled Trial Comparing Articular Hyaluronic Acid Synovitis with and without Photosensitization for the Treatment of Adhesive Capsulitis.”

All our orthopaedic residents continue to actively participate in research activities and many were asked to present papers at national conferences this past year.

Residents have been excited with the program’s new structure and educational sessions. There has been greater focus on the academic days with modifications to the academic teaching schedule. This new schedule features weekly educational rounds for the sports medicine/upper extremity, arthroplasty, pediatric and trauma services.

The Queen’s Orthopaedic Surgery Residency Training Program has had another successful year.
EDUCATION PROGRAM

UNDERGRADUATE MEDICAL EDUCATION PROGRAM

As the Director of Undergraduate Surgical Education, Dr Mila Kolar continues to provide Queen’s medical students with a nurturing and supportive environment.

Since assuming this role, Dr Kolar has felt a great sense of pride and purpose in her career. Dr Kolar has described her work as "a mutual process of learning" between herself, the faculty, and the students. "We’re enriching each other through these roles. Our experience. Dr Kolar is dedicated to her work as a liaison between faculty, residents, and students. She recognizes that improvements could be made in order to better understand the student's learning needs and concerns. Previous assessments were based on a Likert-based scale whereas the new assessment is a rubric-based assessment with a defined criterion for increasing competency. The purpose of this rubric will be a position one among the resident, students, faculty, and residents after conducting a pilot test of this new assessment. Dr Kolar says: "we are hoping to make one step forward in the assessment of our students. We want to provide feedback to guide their learning, to fill their knowledge gaps, to monitor their progress and to identify clerks in need of additional support."

Recent changes have been made to the assessment tools used in the surgery rotation. The department recognized that improvements could be made in order to better understand the student's learning needs and concerns. Previous assessments were based on a Likert-based scale whereas the new assessment is a rubric-based assessment with a defined criterion for increasing competency. The purpose of this rubric will be a position one among the resident, students, faculty, and residents after conducting a pilot test of this new assessment. Dr Kolar says: "we are hoping to make one step forward in the assessment of our students. We want to provide feedback to guide their learning, to fill their knowledge gaps, to monitor their progress and to identify clerks in need of additional support."

The rubric-based assessment tool provides formative feedback. The overall goal during the period of formative feedback is to provide an assessment for learning rather than an assessment of learning ensuring that students can receive the guidance and feedback to achieve the set of competencies needed to create a positive patient experience.

The students are taught to have an active role in identifying clerks in need of additional support. "On her role involves the shift toward competency-based experiences because of their capacity to enhance the students' perspectives and their mission. Dr Kolar believes in the importance of undergraduate education for the academic and professional well-being of medical students. Since assuming this role, Dr Kolar has felt a great sense of pride and purpose in her career. Dr Kolar has described her work as "a mutual process of learning.""

Dr Kolar and her colleagues promote the practice of medicine as an art form. Students are taught that medical practice goes beyond the scope of treating patients based on medical knowledge. The students are taught to have an active role in advocating for their patients, providing culturally sensitive practices, responding to the needs of the patients, and adopting specific attitudes and behaviours. All these requirements encompass a set of competencies needed to create a positive patient experience.

The Undergraduate Surgical Education team is actively engaged in the pursuit to create a nurturing, supportive and creative learning environment for the medical students. The Undergraduate Surgical Education team is actively engaged in the pursuit to create a nurturing, supportive and creative learning environment for the medical students.

The Undergraduate Surgical Education Committee (USEC) approved the initiative and it has been successful in enriching their practice and experience. In addition, students have been able to complete more than the request number of academic activity hours, which were formerly called duty hours. The students maintain a record of these hours in an assessment form. The assessment has been successful in creating a healthy balance of wellness and learning for the students because it enables them to have an appropriate level of engagement in the clinical environment while also having sufficient time to prepare for their exams. As the Gastroenterology and Surgery Course Director, Dr Kolar in collaboration with Dr Heather Murray, the Second Year Curricular Director has modified the structure of the course based on the feedback from the students. Previously the inclusion of topics in urology was a slight disruption in the flow of the course. After re-evaluating and restructuring the content, the course is exclusively focused on gastrointestinal surgery.

The Undergraduate Surgical Education team is actively engaged in the pursuit to create a nurturing, supportive and creative learning environment for the medical students.
THE DEPARTMENT OF SURGERY WELCOMES:

DR. MARK ORMISTON

The Department of Surgery welcomes Dr. Mark Ormiston, who joined Queen’s University as an Assistant Professor in October 2015.

As a Tier II Research Chair in Cardiovascular Regenerative Medicine, Dr. Ormiston is jointly appointed in the Departments of Biomedical and Molecular Science, Medicine and Surgery. Dr. Ormiston’s professional path in life sciences began during his undergraduate studies in Chemical Engineering at Queen’s. During his fourth year, he was introduced to the link between biology and engineering, his interest in the area of life sciences led him to complete a MSc in Chemical and Biomedical Engineering at the University of Toronto and a PhD in Biomedical Engineering and Cardiovascular Sciences at the University of Toronto and St. Michael’s Hospital.

Dr. Ormiston’s work involves an extensive degree of collaboration within and outside of Queen’s University. Dr. Ormiston set up his lab on Botterell Hall’s second floor as a strategic decision to engage with his team. He says: “the reason why I picked this lab and this floor is because Dr. DJ Cook, Alastair Ferguson, and Don Maurice are here. Don and I are cardiovascular scientists, DJ is a neurosurgeon who focuses on stroke and Alastair is a neuroscientist. It produces a really nice neurovascular centre.” He maintains his connections with Dr. Duncan Stewart from the Ottawa Hospital Research Institute, his previous PhD supervisor, and Dr. Morrell and his team from Cambridge University. Dr. Ormiston is also listed as a named collaborator for Dr. Lindsay Fitzpatrick’s O’Brien Institute for Regenerative Medicine and for Dr. Stacey’s research in the Human Mobility Research Centre (HMRC). Her work is focused on inflammatory responses to biomaterials. Dr. Ormiston’s collaborations in this regard are an excellent way for him to connect back to his experience in chemical engineering. He is pleased to be back at Queen’s to conduct his work. “Kingston is a wonderful place to envision building a lab and a life.”

Dr. Ormiston’s work involves an extensive degree of collaboration within and outside of Queen’s University.
Dr Merchant moved from Los Angeles, California where she completed her fellowship in Complex General Surgical Oncology. Prior to that, she completed her residency at the University of British Columbia in Vancouver. She is an Assistant Professor in the Department of Surgery as well as an Attending Staff member at Kingston General Hospital and Hotel Dieu Hospital. She is excited to start her career in Kingston.

Dr Merchant has an interest in Health Services Research. Her team is using the databases from the Institute of Clinical Evaluative Sciences (ICES) to determine trends and practice patterns in treatments for breast cancer and gastrointestinal cancer. The multidisciplinary management of cancer invites the opportunity for collaboration. Collaborators on these research projects include Dr Christopher Booth, Dr Sulaiman Nanji, Dr Sunil Patel, Dr Douglas McKay, and Dr Glykeria Martou. She is currently working on projects related to reconstructive care after mastectomy for breast cancer. The goal of this research is to evaluate current trends in post-mastectomy reconstruction and identify ways of improving access to reconstruction. This is a complex issue as “every patient’s cancer and reconstructive management can be different and requires a thoughtful, well-planned, multidisciplinary approach.”

Dr Merchant is also interested in optimizing cancer care among the elderly population through the investigation of Ontario population data. Dr Merchant’s clinical work involves a broad range of surgical oncology with the majority of her practice focused on breast and gastrointestinal cancer. Her strong passion for surgical oncology developed during residency. In her view, surgical oncology provides the opportunity to work with a diverse range of people and pathologies and the opportunity to make a real difference in the lives of cancer patients.

Dr Patel completed his residency training at Western University and completed a colorectal fellowship at New York Presbyterian Hospital and Memorial Sloan Kettering Cancer Center in New York City, New York. He is an Assistant Professor in the Department of Surgery as well as an Attending Staff member at Kingston General Hospital and Hotel Dieu Hospital.

Dr Patel’s clinical work is primarily focused on colorectal surgery. He has extensive training in laparoscopic and minimally invasive surgery. He intends to introduce the new techniques he has learned in minimally invasive procedures. Dr Patel’s research within the Department of Surgery is focused on colorectal pathology. He will be using population data from the Institute of Clinical Evaluative Sciences (ICES) to determine the outcomes of this patient population. He is working in collaboration with Dr Sulaiman Nanji, Dr Daniel Dingli and Dr Shaila Merchant. Each member of this team is integral to the research process. Dr Patel says: “It’s very effective because we come from slightly different backgrounds and we are active in how we can use that data and what interesting questions.” The investigation of the ICES population data has led the team to question in number of different facets of healthcare utilization from an epidemiological standpoint. Such questions include whether appendectomy is a safe procedure to perform in the middle of the night as opposed to the daytime. He states: “I think it’s an interesting question because most of these patients aren’t that sick when they come in. So would delaying their operation 6-8 hours benefit them or not? Maybe it does, we’re not really sure. We’re looking into that question.” The team is also examining whether accessibility and proximity to cancer centers or an MRI can have an effect on a patient’s condition. The population data allows them to examine how many people are following their treatment guidelines in a timely manner and whether compliance and access to treatment has an effect on their outcomes. Dr Patel stated that he is also interested in issues surrounding the timing of treatment. For example, do adjuvant therapy delays after surgery affect survival?

He also hopes to start more projects surrounding inflammatory bowel disease through the access to the ICES database. Further questions will be generated as the team accesses more data.
The lectureship was held from November 2nd to 5th and hosted Dr Nick Morrell, a well-renowned scholar from the University of Cambridge, England. His four-day visit was filled with tours, meetings, discussions, and lab visits. The title of Dr Morrell’s lecture was “Stepping into The Unknown: The Era of Genomic Medicine and Stem Cells.”

This endowment has been made possible every year as a result of the generous contributions made by Dr Andrew Bruce and the Departments of Surgery and Urology. These contributions have enriched the Department of Surgery’s landscape for research and innovation.

Dr Bruce’s motivations for starting the endowment were twofold. First, he and his wife Margaret Bruce have a strong connection to Queen’s University. He describes Queen’s as “their first love.” Secondly, he wanted to provide the Department of Surgery with substantial opportunities for discussions and networking with the visiting scholars. Providing the visiting scholar with an opportunity to spend an extended period of time would be mutually beneficial for both the scholar and the Department of Surgery.

When reflecting on the timely nature of Dr Morrell’s visit to Queen’s, he states: “Dr Morrell reviewed the whole history of genetics and reviewed material on stem cell implants and this is exactly what we needed. To me, that was the highlight! The second part that I also emphasize is that he showed great interest in Queen’s and an interest in coming back and participating in joint projects. That’s really one of the major objectives of this program: to get Queen’s hooked up with other areas of interest. Whether they’re doing the same type of research, they can help each other and Nick Morrell was unbelievably good!”

The Department of Surgery proudly hosted their Fourth Annual Dr Andrew and Margaret Bruce Visiting Scholar in Surgical Innovation Lectureship in November 2015.

These generous contributions have enriched the Department of Surgery’s landscape for research and innovation.
Although surgical interventions have always played an important role in the management of chronic disease and inflammation, there have been few opportunities to understand if a procedure went as planned and to determine if the outcomes of that particular intervention were successful. This is certainly the case in breast conservation surgeries, wherein 25% of women have to undergo a second resection in order to remove the entire tumor. The same is true for the 2% of Canadian patients that undergo joint replacement surgeries and suffer from sub-optimal outcomes such as re-implantation or amputation because of prosthetic joint infection. These challenges arise because of our serialized approach to patient care and the lack of modalities that detect, for example, positive margins and microbial contamination before the patient leaves the operating room. At a minimum, these limitations put patients at risk and do little to curb the costs of delivering their health care.

Over the last year, the Department of Surgery at Queen’s University has taken a leadership role and has mobilized resources to bridge this unmet need in patient care and surgical productivity through partnership development with Imperial College London and Waters Corporation. This has enabled the Department to acquire specific equipment designed to make real-time pathological measurements. The installation of the intelligent Knife (iKnife) and desorption electrospray ionization (DESI) platforms have the potential to transform the manner of how surgeons assess every surgical intervention by measuring the metabolic fingerprints of tissue and bacteria. The use of molecular and image guidance in surgery is a technological revolution that is very similar to how computer assisted surgeries revolutionized how orthopedic surgeons improved the post-operative care and viability of millions of patients.

“...the Department of Surgery with Imperial College London, Waters Corporation, and other health care providers are taking a leadership role in improving surgical care and outcomes for patients.”

Mobilizing technologies and building partnerships are strategies to help improve all aspects of surgical planning, intraoperative and postoperative care for patients through integration of varied patient health data. The promotion of teamwork between physicians across all surgical specialties and sub-specialties has also improved surgical planning. Investments made in computer assisted surgeries and in new molecular guidance technologies, combined with partnerships built with Imperial College London and other universities in Canada and abroad are examples of how we embrace the importance of innovation and how we differentiate ourselves in surgery. These efforts will raise the bar in our standard of care for our patients while lowering costs.

Research

Leveraging Technology to Improve Surgical Outcomes

The Department of Surgery at Queen’s University has taken a leadership role and has mobilized resources to bridge this unmet need in patient care and surgical productivity through partnership development with Imperial College London and Waters Corporation. This has enabled the Department to acquire specific equipment designed to make real-time pathological measurements. The installation of the intelligent Knife (iKnife) and desorption electrospray ionization (DESI) platforms have the potential to transform the manner of how surgeons assess every surgical intervention by measuring the metabolic fingerprints of tissue and bacteria. The use of molecular and image guidance in surgery is a technological revolution that is very similar to how computer assisted surgeries revolutionized how orthopedic surgeons improved the post-operative care and viability of millions of patients.

Research

Leveraging Technology to Improve Surgical Outcomes

The Department of Surgery at Queen’s University has taken a leadership role and has mobilized resources to bridge this unmet need in patient care and surgical productivity through partnership development with Imperial College London and Waters Corporation. This has enabled the Department to acquire specific equipment designed to make real-time pathological measurements. The installation of the intelligent Knife (iKnife) and desorption electrospray ionization (DESI) platforms have the potential to transform the manner of how surgeons assess every surgical intervention by measuring the metabolic fingerprints of tissue and bacteria. The use of molecular and image guidance in surgery is a technological revolution that is very similar to how computer assisted surgeries revolutionized how orthopedic surgeons improved the post-operative care and viability of millions of patients.

Research

Leveraging Technology to Improve Surgical Outcomes

The Department of Surgery at Queen’s University has taken a leadership role and has mobilized resources to bridge this unmet need in patient care and surgical productivity through partnership development with Imperial College London and Waters Corporation. This has enabled the Department to acquire specific equipment designed to make real-time pathological measurements. The installation of the intelligent Knife (iKnife) and desorption electrospray ionization (DESI) platforms have the potential to transform the manner of how surgeons assess every surgical intervention by measuring the metabolic fingerprints of tissue and bacteria. The use of molecular and image guidance in surgery is a technological revolution that is very similar to how computer assisted surgeries revolutionized how orthopedic surgeons improved the post-operative care and viability of millions of patients.

Research

Leveraging Technology to Improve Surgical Outcomes

The Department of Surgery at Queen’s University has taken a leadership role and has mobilized resources to bridge this unmet need in patient care and surgical productivity through partnership development with Imperial College London and Waters Corporation. This has enabled the Department to acquire specific equipment designed to make real-time pathological measurements. The installation of the intelligent Knife (iKnife) and desorption electrospray ionization (DESI) platforms have the potential to transform the manner of how surgeons assess every surgical intervention by measuring the metabolic fingerprints of tissue and bacteria. The use of molecular and image guidance in surgery is a technological revolution that is very similar to how computer assisted surgeries revolutionized how orthopedic surgeons improved the post-operative care and viability of millions of patients.
The intelligent Knife, also known as the iKnife, represents an emerging technology that has the potential to revolutionize surgery by detecting diseased tissue in real-time as it is being resected. The iKnife performs mass spectrometry analysis on tissue as it is being excised during electrosurgery. By “sniffing” chemical constituents in living tissue, the Navigated iKnife guides the surgeon in three-dimensional space, allowing the surgeon to carry out accurate and precise operations.

The new system, known as the iKnife, with spatial navigation capabilities developed at Queen’s, was inspired by Dr. John Rudan, Head of the Department of Surgery, who recruited into the project a cadre of distinguished clinician and engineering scientists to address important issues of human mobility.

The iKnife spectral signatures with relevant pathological properties. Dr. David Berman and his colleagues are pursuing concurrent investigations into the effect of chronic infections of surgical wounds. The iKnife was invented by Dr. Zoltan Takats at Imperial College London, where it has been used successfully in the UK. where it has been used successfully in the UK. The Queen’s team is working with the iKnife to establish a new disease classification system based on chemicals.

Dr. David Berman, Director of Queen’s Cancer Research Institute, leads the efforts to create a “chemical encyclopedia” of specific types of disease, focusing on cancers of the breast, prostate, liver, and colon, to virtually link the iKnife’s spectral signatures with relevant pathological properties. Dr. Berman and his colleagues in the colorectal cancer project, Drs. John Rudan and Elaine Jenah, are investigating breast, brain, and colon, to uniquely link the smoke vented by a conventional electrosurgery device with spatial awareness, allowing the surgeon to diagnose cancer project, Drs. John Rudan and Elaine Jenah, is investigating breast, brain, and colon, to uniquely link the smoke vented by a conventional electrosurgery device with spatial awareness, allowing the surgeon to diagnose breast cancer, Drs. Berman and Robert Siemens have performed concurrent investigations into each of these diseases. Dr. Berman and his colleagues run concurrent investigations into the effect of chronic infections of surgical wounds. The research project, Drs John Rudan and Elaine Jenah, is investigating breast, brain, and colon, to uniquely link the smoke vented by a conventional electrosurgery device with spatial awareness, allowing the surgeon to diagnose breast cancer, Dr. Berman is involved with research projects, or any equipment that may be invested in our research. This will further expand HMC’s research and support generated by the Helliwell Chair. The Chair is an important merger of computer science, engineering, and medical science to address important issues of human mobility.
THE 2015 CHARLES SORBIE FACULTY RESEARCH DAY

On Friday, April 17, 2015, the Department of Surgery held its Fifth Annual Charles Sorbie Faculty Research Day.

The invited speaker for this event was Dr Gabor Fichtinger who is a professor of Queen’s University’s School of Computing and the Cancer Research Institute. The topic of his presentation was: “Tracked Ultrasound Navigation in Surgery and Interventional Procedures.”

The annual event is made possible through the generous donation of Dr Janet Sorbie in loving memory of her husband Dr Charles Sorbie. Dr Charles Sorbie made significant contributions to the Department of Surgery during his forty-five years at Queen’s. He held the position of Department Head for ten years with a great deal of vigor and imagination. His family members try to attend the Charles Sorbie Faculty Research Day every year as a way of showing their full support for the Department of Surgery. The invited speaker, Dr Fichtinger, attended the event for the first time in 2016. In her opinion, the Charles Sorbie Faculty Research Day encourages all participants to share their research with other faculty, attending staff, and fellows. Furthermore, this is an excellent opportunity for the surgical residents to receive mentorship from faculty.

Dr Fichtinger encouraged the residents to keep their curiosity and wonder. He stated: “Dr Charles Sorbie left on the Queen’s community a legacy of knowledge, dedication, and researcher. I know that he would love to try to pass that on to the residents and fellows that he mentored.”

Dr Fichtinger is recognized by his legacy that Dr Charles Sorbie left in the Queen’s community.

Approximately 80 individuals, including residents, faculty members, graduates, and students, attended the event this year.

The residents from the Department of Surgery are required to present ongoing clinical and basic science research while under the supervision of attending staff. Twenty-six residents presented their research and three residents were selected for awards.

The William Ersil Memorial Award for the Best Paper in Orthopaedic Surgery, which has been made possible through the generous donation of Dr Don Chow, was awarded to Dr Allison Tucker’s paper titled “A Randomized Controlled Trial Comparing Arthrographic Joint Injection with and Without Steroids for the Treatment of Adhesive Capsulitis.” A unique characteristic of this paper was the incorporation of a randomized controlled trial into the study design.

The William Resident Research Day was established in honour of Dr William Ersil who received his medical degree from Queen’s in 1979 and entered the Orthopaedic Surgery Residency Program. Unfortunately, during his chief year of residency, he was diagnosed with a malignant disease and he passed away before he could complete his residency. His inquisitive nature and strong belief in the value of research inspired this annual research day to come to fruition.

Dr Peter Armstrong, gave two lectures on “Shriners Hospitals Children: the History, The Challenges and the Future” and “A Surgeon from a world knowledge, translational, and career development point of view.”

The annual research day, which is held in conjunction with the Office of Continuing Medical Education, has become one of the most important events in the Department of Surgery. The event provides an occasion for all participants to interact with each other in a professional and casual setting while establishing and renewing professional and personal connections. The Department of Surgery extends a warm thank you to the residents, attending staff, and others who attended this event for another successful year.
Dr Richard Reznick has accepted this prestigious award with humility and honor. He feels proud to have won this award from his alma mater alongside previous award recipients including Dr Phil Gold, who was widely recognized for his discovery of one of the most common markers of cancer known as CEA, and Dr Charles Scriver, a well-known leader of medical genetics in Canada.

Dr Reznick was the inaugural Director of the University of Toronto Faculty of Medicine Centre for Research in Education at University Health Network, The Wilson Center, which is one of the top medical education research centers in the world. His term ended in 2002. The Wilson Center will be celebrating its 20th anniversary in 2016. Prior to his arrival at Queen’s, he served as Chair of the Department of Surgery at the University of Toronto. Much of Dr Reznick’s research work has focused on assessment in medical education. He and his colleague’s research on technical competence have led to the development of an assessment tool that is being used worldwide. His work has been widely disseminated as an author or co-author of over 120 peer-reviewed publications and through numerous lectures at hospitals, universities, and scientific institutions around the world.

Dr Reznick has won a number of other awards including the Royal College of Physicians and Surgeons of Canada Medal in Surgery, the Association for Surgical Education Distinguished Educator Award, the National Board of Medical Examiners John P. Hubbard Award, the Karolinska Institute Prize for Research in Medical Education, the Canadian Association of Medical Education (CAME) Distinguished Contribution to Medical Education Award, the James IV Traveling Fellowship, and the Daniel C. Tosteson Award for Leadership in Medical Education.

Dr Reznick attributes his successful career path toward “the road less taken.” Shortly after completing his surgical training, he pursued a Masters of Education and devoted 30 years of his career to promoting medical education through a scholarly approach. Dr Reznick’s passion for enhancing the educational climate continues in his current role.

Receiving the McGill Alumni Global Lifetime Achievement Award is a tremendous honour for Dr Reznick and contributes to Queen’s pursuit for research prominence. Dr Reznick is the Dean of the Faculty of Health Sciences and has recently been appointed as the Dean for a second term. While playing a largely collaborative role internally and externally, he has a number of plans for the remainder of his term. He says: “we have a thriving research operation which I want to see grow and intensify.” Dr Reznick plans to champion and support the faculty’s desire to promote new educational models, such as transforming our training programs to a competency-based design. On the clinical side, he believes that we are being really good care of the patients in our Kingston area but we want to expand our reach to play a more prominent role both regionally and provincially. In so doing, it is our plan to attract top talent to Kingston and hire people who have at their heart that joint mission of looking after patients and promoting academic scholarship.
The Department of Surgery is proud to announce Dr Tamas Ungi as the recipient of the 2015 Olympus ISCAS Best Paper Award at The International Society for Computer Aided Surgery (ISCAS) Conference for his paper titled “Real Time Navigation and Breast Tumour Surgery.”

Before coming to Queen’s, Dr Ungi attended the University of Calgary and the University of British Columbia (UBC). She completed her MD and PhD studies at the University of Calgary. Her PhD work in Biomechanics was completed under the supervision of Dr Gu Feng and Dr Nigel Shrieve. After finishing medical school, she completed her residency in Orthopaedic Surgery at UBC. Following this, she joined the Paul B. Helliwell Chair in Orthopaedic Surgery at Queen’s University, where she undertook a clinical fellowship training with a focus on Hand, Wrist, and Elbow surgery at UBC. She then came to Kingston to complete a Hand and Upper Extremity Surgery Fellowship under the supervision of Dr David Pichora and Dr Ryan Bellmore. Dr Ungi’s current CRFP research is supervised by Dr Pichora, the Paul B. Helliwell Chair in Orthopaedic Surgery.

Dr Ungi attributes the project’s unique innovative success to the close working relationship of the team members. The Perk Lab includes physicians, mechanical engineers, electrical engineers, software engineers, and computer scientists. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

Dr Ungi attributes the project’s unique innovative success to the close working relationship of the team members. The Perk Lab includes physicians, mechanical engineers, electrical engineers, software engineers, and computer scientists. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.

The award-winning project’s unique innovation led to not only the implementation of a device that can be implemented for breast cancer surgery but also to a methodology to be implemented for surgical site navigation in general. “To get the results in the paper, we needed a team with many different people who work really closely together. Share ideas, and understand each other. That is unique. I was asked at a conference, if the technology has been around for several years, why hasn’t anybody implemented this solution for breast cancer surgery before? I think what hasn’t happened before is that such an effective team is working together in the solution,” Dr Ungi tells. It was a seven-year process of developing a wearable surgical navigation technology platform that enabled this system for breast cancer surgery. Throughout this process, the team has gained a lot of experience that allowed this project which led to the navigation from bench to the operating room. As recognized by this award, from the beginning, the team was mindful of the specific requirement that was needed for bringing this device into the operating room and maintained that focus while completing the experiment.
Belkova A, R, Abolmaesumi P. Bone enhancement in ultrasound using local...Bone and Joint Surgery,
and McMaster Universities Osteoarthritis Index for elderly...FAITH Trial Investigators (Kingston site co-investigators
Zielinski SM, Bhandari M, Patka P, Van Lieshout EM. HEALTH
Disord Treat,
Shoulder Injuries in Primary Care, 12-2015, Brown G, Park K, Bicknell RT. Management of Occupational...NY, Book Chapter
International Journal of Computer
ANNUAL REPORT 2015
Wood G
Reconstructive Procedure, 7-2015,
of Gastrointestinal Oncology,
Cochrane
Dependent: Results from a Randomized Trial, 1-2015,
Heart Rhythm: Cardiac Cell Culture, 10-2015,
Canadian Journal of Scholarship in Teaching and Learning,
RC, Thorpe JB, Milne B. A novel software program for detection...Field of Neuroradiology
The current decline in oil: Investment and
Plastic and Reconstructive Surgery,
Journal of Laparoscopic
Materials and Methods, 1-2015,
Dependence: A Pilot Study, 11-2015,
Coriolano K, Aiken A, Pukall C, David JS
The New England Journal
Vol. 114(2):879-92
the advantage of computer-assisted surgery in prosthesis...American society of medical education
International Journal of Computer
International Journal of Computer
American Journal of Cardiology: Cardiac Cell Culture, 10-2015,
Canadian Journal of Scholarship in Teaching and Learning,
IMAGING 2015
Abbo Anas EM, Seitel A, Rasoulian A, St John P, Kolar M, Nanji S
Assisted Radiology and Surgery,
Conclusion of the Techne 6D system for ultrasound-guided lumbar puncture on abnormal spine...Computerized training models, 6-2015,
Hefny MS, Engel C, Battista A, Deluzio KM, Lowry RM, Book Chapter
The European Journal of Human Genetics
324(11):1820-6
Spiral CT in the assessment of the extent of liver disease in colorectal cancer patients with metastases in...2015
Lung Metastases in Routine Clinical Practice: Does it Really Matter? A Systematic Review, 10-2015,
Borschneck DP, Bicknell RC, Thorpe JB, Milne B. A novel software program for detection...Field of Neuroradiology
IMAGING 2015
Abbo Anas EM, Seitel A, Rasoulian A, St John P, Kolar M, Nanji S
Assisted Radiology and Surgery,
Conclusion of the Techne 6D system for ultrasound-guided lumbar puncture on abnormal spine...Computerized training models, 6-2015,
Hefny MS, Engel C, Battista A, Deluzio KM, Lowry RM, Book Chapter
The European Journal of Human Genetics
324(11):1820-6
Spiral CT in the assessment of the extent of liver disease in colorectal cancer patients with metastases in...2015
Lung Metastases in Routine Clinical Practice: Does it Really Matter? A Systematic Review, 10-2015,
Borschneck DP, Bicknell RC, Thorpe JB, Milne B. A novel software program for detection...Field of Neuroradiology
IMAGING 2015
Abbo Anas EM, Seitel A, Rasoulian A, St John P, Kolar M, Nanji S
Assisted Radiology and Surgery,
Conclusion of the Techne 6D system for ultrasound-guided lumbar puncture on abnormal spine...Computerized training models, 6-2015,
Hefny MS, Engel C, Battista A, Deluzio KM, Lowry RM, Book Chapter
The European Journal of Human Genetics
324(11):1820-6
Spiral CT in the assessment of the extent of liver disease in colorectal cancer patients with metastases in...2015
Lung Metastases in Routine Clinical Practice: Does it Really Matter? A Systematic Review, 10-2015,
Being born in Moncton, New Brunswick and educated at McGill University, Dr. Belliveau received his MD in 1974. After residency in General Surgery in Montreal and a Colorectal fellowship in London, UK, under the late Sir Alan Parks, and a second Colorectal Surgery fellowship at the University of Minnesota, he was appointed Assistant Professor in the Department of Surgery at McGill in 1981. He was appointed to the rank of Associate Professor in 1986. He became a Senior Surgeon, Colorectal Surgery Service Chief as well as Section Director for General Surgery at the Royal Victoria Hospital in 2001.

In January 2001, he was recruited to Kingston to assume the position of Associate Professor at Queen’s University as an active Colorectal Surgeon in the Division of General Surgery and Surgical Education. He was appointed Professor of Surgery with Tenure. In 2004 he was selected as Chair of the Division of General Surgery at Queen’s for a five-year mandate. In 2005 he obtained a Masters in Public Administration at Queen’s. From 2005 to 2010, he served on the Hospital Boards representing the Medical Staff. In 2010 he served as Acting Chief of Staff at Hotel Dieu Hospital and has served on the Senate Budget Committee and Chaired the School of Medicine Assessment Committee and the Awards Committee. Outside the University, he has served as Chair of the Colorectal Surgery Specialty Committee of the Royal College of Physicians and Surgeons of Canada.

Acclamations:

- Acknowledged National & Internationally
- Recognized by the Canadian Association for Surgical Education with the Outstanding Educator Award (2006)
- Recipient of the 2013 John Provan Award for Excellence in Undergraduate Surgical Education in Canada

Dr. Belliveau is acknowledged nationally and internationally for his scholarship in surgery for inflammatory bowel disease, colon cancer and surgical education. He has held several visiting professorships.

At the National level, in 2006 he was elected President of the Canadian Association of General Surgeons. He is a Past President of the Canadian Society of Colon and Rectal Surgeons, the Canadian Association of Academic Surgeons, the Canadian Undergraduate Surgical Education Committee. In 2004 he was recognized by the Association for Surgical Education ASE with the Outstanding Educator Award.

Dr. Belliveau’s expertise as an educator was recognized by receipt of the 2012 John Provan Award for Excellence in Undergraduate Surgical Education in Canada. This is an extremely prestigious award recognized at a national level. The award is designed to recognize outstanding contribution to undergraduate surgical education in Canada.

Dr. Belliveau’s tenure with Queen’s was marked by his commitment to the profession. Many colleagues, current and former surgical residents, administrative staff, senior hospital administration, family and friends attended this wonderful tribute to Dr. Belliveau.

Dr. Belliveau has happily married with three lovely children, as well as six wonderful grandchildren. We wish him all the best in his retirement.
Dr. John Henson passed away suddenly on January 20, 2015, at the age of 61. He will be greatly missed by his three children, family, friends, and the innumerable patients he treated over the span of his career. He often spoke of his children with great pride. It was well known that his vocation was as a surgeon, but his true passion was his hobby farm.

John graduated Queen’s Medical School in 1980 and completed his postgraduate training in General Surgery at Queen’s in 1985, after which he accepted a staff appointment at Hotel Dieu and Kingston General Hospitals. John was passionate in his role as a surgeon, caring deeply about his patients and their needs. He was a mentor to our surgical resident and medical students and gave freely of his time to broaden their experience and understanding of Surgery. Former residents enjoyed his teaching technique, as well as his colorful stories of life in medicine and life on the farm. He served his community and will be remembered for his skills, compassion, and wonderful sense of humor.

He treated both staff and patients with the highest respect and will be remembered fondly. The members of the Department were deeply saddened by the news of the death of Dr. Henson.